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COMMENT 

Comment on K-H Yang’s energy operator and gauge 
independent transition amplitudes 

T E Feuchtwang, E Kazes and P H Cutler 
Physics Department, The Pennsylvania State University, University Park, PA 16802, USA 

Received 11 October 1983 

Abstract. The purpose of this comment is to discuss critically the energy operator intro- 
duced by Yang and collaborators. We also present a critique of the gauge independent 
transition amplitudes defined by these authors which, we believe, obscures the physical 
interpretation of transition amplitudes. 

In a series of recent publications Yang and collaborators (Yang 1982a, b, 1983a, b, 
Kobe and Wen 1982) reiterate their observation that the interaction of a material 
system with the electro-magnetic field involves an energy transfer whose rate is the 
primary observable quantity; they have interpreted this quantity in terms of Poynting’s 
theorem and showed that 

(1) dxB/df = d x B /  at - (i/h)[ x ~ ,  %fl= $ ( j  * E + E * j )  

where the ‘energy operator’ XB is the ‘mechanical’ component of the Hamiltonian, 

X=(2m)- ’ [p - (e /~ )A]~+  V+eAo, (2) 

i.e. 

xB = x- eAo = tmv2+ v. (3) 

We note that (1) may also be interpreted in terms of the work-energy theorem. 
In this comment we discuss the energy operator and its time dependent spectrum 

to show that Yang et al’s claim that the ‘eigenfunctions’ of the energy operator are 
uniquely suited for the definition of gauge independent transition amplitudes is incor- 
rect. In fact, we demonstrate that while these transition amplitudes are indeed gauge 
independent, they are, in general, neither measurable nor do they relate to probabilities 
of physically significant observations in the study of electromagnetic interactions with 
matter. Specifically we shall show the following: 

(1) There is no a priori reason to prefer, as a basis for the expansion of solutions 
of the Schrodinger equation, the time dependent ‘eigenfunctions’ { 4e,(t)(?)} belonging 
to the generally time dependent eigenvalues { ~ ~ ( f ) }  of the ‘energy operator’ xB. 

(2) Yang et al’s ‘transition amplitudes’, while gauge independent, do not generally 
represent probability amplitudes for an event of either physical interest or simple 
operational interpretation. 
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In their analysis, Yang et a1 do not seem to distinguish between gauge covariance 
of operators, and the gauge independence of their expectation values. The latter 
follows only if the gauge transform of the operator is equal to its unitary transform 
U , 6 U i 1 ,  with U, =exp[ieA(r, t ) / h c ]  (Feuchtwang et al 1984). Noting that 2fB, in 
contrast to %’, satisfies this condition, Yang invokes (1)-(3) to endow ZB with a unique 
physical significance. In particular, they assert that the ‘eigenvalue problem’ for the 
time dependent energy operator, 

[ ~ B ( t ) - ~ j ( f ) l ~ E , ( r ) ( f )  = O ,  (4) 
whose eigenvalue spectrum must in general be time dependent, specifies the uniquely 
preferred and physically significant transition amplitudes 

ae,(r)(t) = ( 4 E , ( r ) ( t ) l @ ( t ) ) *  ( 5 )  

There are several serious flaws in this argument, which we shall discuss. 
To begin with, we observe that one can always determine a gauge transformation, 

A + A’ = A  + V A ,  Ao+AL=Ao-c-’aA/at, (6) 
such that Ab =O.  In such a gauge, X’, the gauge transform of X, and x;, the gauge 
transform of XB, are identical. That is, 

XB(A’)=X;(A)=X’(A, Ao)=X(A’).  (7) 
Here we note parenthetically that, in general, X’ is not a unitary transform of 2. 

class of gauges for which 
In the following we therefore restrict ourselves, without loss of generality, to the 

XB = x. (8) 
In these gauges Yang’s transition amplitudes are the projection of any given solution 

$(r,  t ) ,  of the Schrodinger equation in the presence of the electromagnetic field, 

[ Z - i h  a/ar]@ =0,  

on the eigenfunctions of the Hamiltonian X, of the same system. However, these are 
not probability amplitudes of interest in the study of electromagnetic interactions with 
matter. Rather, what are of interest are the probability amplitudes a,,(t) for finding 
the system in states of an appropriate field-free Hamiltonian. 

It is evident that the set { @ c , ( r ) ( t ) }  defined by 

[ X ( r )  - ~ j ( t ) l 4 E , ( r ) ( t )  = O  (9) 

forms a complete basis which can be used in a series expansion of an arbitrary solution, 
*(r7 t ) ,  

of the Schrodinger equation. 
The ‘transition amplitudes’ 
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are certainly gauge independent, but this is only a necessary and not a sufficient 
condition for expansion coefficients to represent physically meaningful probability 
amplitudes. Namely, they have also to correspond to probabilities of events of physical 
interest and they have to be measurable. We shall now demonstrate that Yang et ai's 
amplitudes do not satisfy either of the latter two conditions. 

Yang et a1 do not specify the initial values for the Hamiltonian in (9); we may, 
however, choose it to be the field-free operator. While this choice appears to establish 
a connection between a,,(,,( t )  and the conventional amplitude aEj( t ) ,  nevertheless, the 
amplitude a,,(,,( t )  is still not related in any simple fashion to the (conditional) probabil- 
ity amplitude of finding the system in a field-free state of energy ei given that at time 
t = 0 it was in a field-free state of energy ei. But this is precisely what one wishes to 
determine in experiments involving the interaction of electromagnetic radiation with 
matter. Operationally, this probability is determined by counting photons of energy 

hw = Ei - Ej, ( 1 2 a )  
emitted as a result of this 'transition'. On the other hand, if one were to agree with 
Yang that one really wanted to determine the conditional probability for the system 
at time t to be in a state of energy si( t ) ,  given that at t = 0 it was in the field-free state 
of energy ei, then the uncertainty relation A E  A t  > h would limit the operational 
significance of this statement because it would require an instantaneous measurement 
of the photon energy h w ( t ) .  That is, while a multichannel analyser can be used to 
determine the average (i.e. expectation value of the) dissipation of the system, it cannot 
determine the instantaneous energy of photons which have a continuously variable 
energy, 

h w ( t ) = e i - E j ( t ) .  (12b) 
We note that the preceding discussion of the conceptual difficulties associated with the 
interpretation of the expansion coefficients ae,( ,)(  t )  as transition amplitudes does not 
apply in its entirety to the electric dipole approximation. In this approximation the 
energy operator is a unitary transform of the field-free Hamiltonian, Xo, 

YtB = ( 2 m ) - ' [ p -  ( e / c ) A I 2 +  V = U,( p 2 / 2 m  + V) U i ' ,  

U, = exp[ieA(t) ( r / h c ) ] .  (14) 

( 1 3 )  
where 

In the electric dipole approximation XB and X are identical, and their eigenvalue 
spectrum is the same as that of 2,. Furthermore the eigenfunctions {4,(t)} of Yt and 

of Xo are related by the unitary transformation U,, 

A,( t )  = U&, ; ( 1 5 )  
therefore Yang et al's transition amplitudes satisfy the identity 

({ U,' XU, - U,' [ih( a / a t )  U,]} - ih(a/at)) ~ 2 '  + = 0. (17)  

nl= Y t o - ( e / c ) ( a A / a t )  * r. (18) 

That is, the time evolution of U:'+ is governed by the Hamiltonian 



1160 T E Feuchtwang, E Kazes and P H Cutler 

Thus in this simple case, Yang et al’s definition of transition amplitudes is equivalent 
to the conventional definition in a particular gauge. The solution of the Schrodinger 
equation with x‘ as the Hamiltonian is projected on the eigenfunctions of the field-free 
Hamiltonian, Xo. It is important to recognise that by defining the conventional 
transition amplitudes in terms of x’ one explicitly singles out an ‘initial’ or preferred 
gauge. 

Finally we note that due to the well known non-uniqueness of the classical 
mechanical Lagrangian previously discussed by us (Feuchtwang et a1 1983a, b, Kazes 
et a1 1983), there exists a large class of ‘energy operators’, XB[f], all of which satisfy 
the gauge independent formulation of ( l ) ,  namely that the expectation value of the 
total time derivative of XB[f] is the mean dissipation: 

($[flldXB[fl/dtl&f]) = t<i * E + E  ’ i) (19) 

(ih(a/at) - Wfl)+,[fI = 0, (20) 

%‘[f]= ( 2 m ) - ’ [ p - ( e / c ) A + V f l 2 +  V+eA,+af/at. (21) 

where 

The function f arises from the total time derivative dfldr which can be added to the 
classical Lagrangian without affecting the equations of motion. We shall impose on f 
the condition 

eAo= -af/at, (22) 
so that X [ f ]  reduces to an ‘energy operator’, in the sense of ( 2 )  and (3). We emphasise 
that the right-hand side of (19) is independent of f. 

It is evident that the projections of +(t) on the set of eigenfunctions, {4,([f])}, of 
any one of the class of energy operators %B[f] are explicitly gauge invariant quantities, 
and, following Yang et al’s argument, could have been chosen to define a set of gauge 
invariant transition amplitudes, 

This illustrates once more the general non-uniqueness of transition amplitudes in the 
presence of electromagnetic fields, which, as we noted above, is traceable to the 
corresponding non-uniqueness of the Lagrangian formulation of classical mechanics. 

In conclusion, we have shown the following. 
( 1 )  The energy operator introduced by Yang is one of a large class of operators 

all of which satisfy (1)-(3). Thus, there is nothing unique about Yang’s particular 
choice. 

(2) There is no a priori reason to prefer the time dependent ‘eigenfunctions’ 
{$E,(r)(t)} of any of the ‘energy operators’ XB as a basis for the expansion of solutions 
of the Schrodinger equation, since, in general, they involve time dependent energy 
eigenvalues which cannot be measured precisely. 

(3) In the presence of fields, Yang et al’s transition amplitudes still exhibit the 
non-uniqueness traceable to the corresponding non-uniqueness of the Lagrangian 
formulation of classical mechanicst. The gauge independent formulations of quantum 

t The determination of gauge independent transition amplitudes at any time after the external fields have 
been switched off, discussed by Feuchtwang er al (1983b), is not affected by this non-uniqueness of the 
Lagrangian. 
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mechanics exhibit a corresponding non-uniqueness (Feuchtwang et al 1983a, b, Kazes 
et a1 1983, DeWitt 1962, Mandelstam 1962, Belinfante 1962, Aharonov and Bohm 
1962). 

(4) The energy operator and its eigenfunctions provide Yang et a1 with a basis set 
exhibiting an explicit gauge dependence, which cancels the bothersome gauge depen- 
dence of the expansion coefficients, or ‘transition amplitudes’. In this sense Yang et 
al’s approach is similar to that discussed by Feuchtwang et al (1983a). However, in 
contrast to the latter approach, the procedure advocated by Yang and collaborators 
leads, in general, to ‘transition amplitudes’ which, while they are gauge independent, 
generally do not represent probability amplitudes for an event of either physical interest 
or simple operational interpretation. 

Acknowledgment 

This work was supported in part by the Office of Naval Research, Arlington, Virginia, 
contract no. NR 619-007. 

References 

Aharonov Y and Bohm D 1962 Phys. Reo. 125 2192 
Belifante F J 1962 Phys. Reo. 128 2832 
DeWitt B S 1962 Phys. Reo. 125 2189 
Feuchtwang T E, Kazes E, Grotch H and Cutler P H 1983a Phys. Lett. A 93 4 
- 1984 J. Phys. A: Math. Gen. 17 151 
Kazes E, Feuchtwang T E, Grotch H and Cutler P H 1983 Phys. Reo. D 21 1388 
Kobe D H and Wen E C-T 1982 J. Phys. A: Math. Gen. 15 787 
Mandelstam S 1962 Ann. Phys. 19 1 
Yang K-H 1982a J. Phys. A: Math. Gen. 15 437 
- 1982b J. Phys. A: Math Gen. 15 1201 
- 1983a J. Phys. A: Math. Gen. 16 919 
- 1983b J. Phys. A: Math. Gen. 16 935 


